Many-to-Many Relationships: Part One

Exercise Preview

SIGN OUT ACCOUNT

@ SHOP GIFTFINDER ABOUT CONTACT

Sesame Street Count Doll was added to your cart.

YOUR CART ORDER SUMMARY
Thank you for shopping with us! Subtotal $38.97
Item Quantity ltem Price Total Price Shipping FREE
Corkscrew Bill 1 $19.99 $19.99 Estimatod Tax $0.00
Item #NG45636
iﬁ 2 update Total $39.97
..ﬂ X remove

Sesame Street Count Doll $19.99 $19.99
Item #NG12345

5 update

»® remove

Exercise Overview

In this exercise, we'll get the cart working with the ability to add items to it. In
Rails Level 1, we explored the most basic model relationships with has_many and
belongs_to. Now we'll be looking at more complicated relationships between
model objects.

. If you completed the previous exercises, you can skip the following sidebar. We
recommend you finish the previous exercises (2A-2D) before starting this one. If you
haven't finished them, do the following sidebar.

If You Did Not Do the Previous Exercises (2A-2D)

1. Close any files you may have open.

2. On the Desktop, go to Class Files > yourname-Rails Level 2 Class and
delete the nutty folder if it exists.

3. Select the nutty-customizing active admin done folder and hit Cmd-D to
duplicate it.

4. Rename the folder to nutty.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP 73

74

Many-to-Many Relationships: Part One

Setup

. On the Desktop, navigate to Class Files > yourname-Rails Level 2 Class > That

Nutty Guy HTML

. Open cart.html in a browser. This is what we'll be building now. Customers will be

able to put products in the cart and then check out.

. For this exercise, we'll continue working with the nutty folder located in Desktop >

Class Files > yourname-Rails Level 2 Class > nutty

If you haven't already done so, we suggest opening the nutty folder in your code
editor if it allows you to (like Sublime Text does).

. Launch Terminal.

. In Terminal, type ed and a space, then do the following:

* Drag the nutty folder from Desktop > Class Files > yourname-Rails Level 2 Class
onto the Terminal window (so it will type out the path for you).

e In Terminal, hit Return to change directory.

. If you completed the previous exercises (2A-2D), skip this step and go on to the

next one. If you started from a prepared folder, type the following into Terminal:

bundle
rake db:migrate
rake db:seed

. Run the Rails server in detach mode by typing the following:

rails s -d

. In a browser, go to: localhost:3000 Feel free to check out the site. All the products

should have their own images, and their specs should be nice, bulleted lists.

The Cart Controller

. We usually like to start with a controller when implementing a new feature.

In Terminal, type the following to create a cart controller:

rails g controller cart

. In your code editor, open nutty > config > routes.rb

. A few lines above the end keyword, add the following code shown in bold:

resources :products, only: [:index, :show]
resources :cart, only: [:index, :create]

root 'products#index'

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Many-to-Many Relationships: Part One

Save the file, then close it.

. In your code editor, open nutty > app > controllers > cart_controller.rb.

Add the following code shown in bold:

class CartController < ApplicationController
def {dindex
@title = "Your Cart"
end

def create
end
end

Save the file.

The next step would typically be to create a view. It could take a lot of typing to set
up all the design, so to make things easier for you, we've included a snippet with the
code you need.

. Open a Finder window and navigate to: Desktop > Class Files > yourname-

Rails Level 2 Class > snippets
Click on the index.html.erb file and hit Cmd-C to copy it.

Still in the Finder, navigate to: Desktop > Class Files > yourname-
Rails Level 2 Class > nutty > app > views > cart

Hit Cmd-V to paste the file into the cart folder.

In your code editor, open nutty > app > views > cart > index.html.erb
Check out the code. Aren't you glad you didn't have to type all this?
In a browser, go to: localhost:3000/cart Looking good so far!

Click the Cart link at the top right. Notice that this took us to cart.html.
We need to fix this.

In your code editor, open nutty > app > views > layouts > application.html.erb
Around line 43, find the link for cart.html and change it to /cart as shown below:
<a 1id="cart" href="/cart">

Save the file, then close it.

In a browser, go to localhost:3000 (or reload it if you're already there).

Click the Cart link and now it should take you to localhost:3000/cart

That's the bare minimum to get us up and running. The cart data we currently have
is not being driven by Rails yet.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

75

76

Many-to-Many Relationships: Part One

Making the Cart Visible Only to Registered Users

First, we know we're going to need a cart model. For simplicity's sake, let's say you
have to be logged in to the site to add products to the cart.

. Go to Terminal and create a cart model by typing:

rails g model cart customer:references

The reason we're adding customer :references is because we're going to require
the cart to belong to a customer account. It's a way of making sure we only show
the cart to the person it belongs to.

. Apply it to the database by typing:

rake db:migrate

. In your code editor, open nutty > app > models > customer.rb

. Add the bold code to make sure the customer model knows about the cart:

devise :database_authenticatable, :registerable,
:recoverable, :rememberable, :trackable, :validatable

has_one :cart
end

As shown in the diagram below, has_one is a way of saying that the Customer and
Cart models are connected and the foreign key (customer_-id) is in the Cart model.
If you have a one-to-one relationship (as opposed to many-to-one), you would say
has_one to refer from the model that doesn't have the foreign key (Customer) over
to the one that does (Cart).

has_one Relationship

id id
email customer_id

has_one :cart belongs_to :customer

NOTE: The diagram above is an entity-relationship model. The line connecting the
two models shows the relationship between them. In this case, the has_one
relationship is shown by using the following line —. In future diagrams in this
workbook, you'll also see the following line —< for a has_many relationship.

. Let's next deal with loading the cart in the controller. Save the file, then close it.

. In your code editor, open nutty > app > controllers > cart_controller.rb

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

10.

11.

12.

13.

Many-to-Many Relationships: Part One

We can only load the customer’s cart if the customer is signed in. So let's check that
before we go any further. We should also create a cart for the customer in case none
exist. Add the bold code to specify what happens if a customer is signed in or not:

class CartController < ApplicationController
def dindex
@title = "Your Cart"
if customer_signed_in?
current_customer.create_cart if current_customer.cart.nil?
@cart = current_customer.cart
else
redirect_to new_customer_session_path, alert: "Please sign in to
access your cart." and return
end
end

The first part of the code checks if the customer is signed in. If they don't have a
cart, one will be created for them. If the customer is not signed in, they will see an
alert and be redirected to sign in. and return can be very important because
otherwise, even though the customer was redirected, any code beneath it would
continue executing.

Save the file.

In a browser, go to: localhost:3000

Click on the Cart link at the upper right.

In order to sign in, you'll need to create an account. Click the Sign up link.
Enter an email and password, then click Sign Up.

After signing in, go to the Cart page. You should have no problem viewing it now.

Many-to-Many Relationships

We don't yet have a way to associate products with the Cart model. has_many and
belongs_to are not going to be enough for us here. For one thing, where would
the foreign key go? If the cart id key went in the products table, then each product
could only ever be put in one cart, which obviously won't work if we want to sell
more than one! On the other hand, putting the foreign key, like a product id key, in
the Cart model would limit us to one product per customer. What we need to
implement here is a many-to-many relationship. Rails provides a number of tools for
us to do just that.

NOTE: For a refresher of the has_many and belongs_to relationship with an
example of a situation in which that model relationship would be suitable, read the
sidebar at the end of the exercise.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

77

78

Many-to-Many Relationships: Part One

The most basic kind of many-to-many relationship is has_and_belongs_to_many.
This relationship allows each Product to have any number of carts, and each Cart to
have any number of products in it. To implement this, we have to manually create a
join table. A join table is a special database table, which keeps track of which
products and which carts are associated.

has_and_belongs_to_many Relationship

Product

carts_products

cart_id
product_id

cart has_and_belongs_to_many products product has_and_belongs_to_many carts

This is a join table,
not a model object.

. Let's create a migration to do that. In Terminal, type:

rails g migration create_carts_products cart:references product:references

NOTE: The convention for join tables in Rails is that they're named alphabetically by
model in the plural. So if you're relating cart and product, “c" comes before “p" and
make them both plural.

. Apply the migration by typing:

rake db:migrate

. In your code editor, open nutty > app > models > cart.rb.

. Add the following bold code to let the cart model know about this relationship:

class Cart < ActiveRecord: :Base
belongs_to :customer

has_and_belongs_to_many :products
end

. Save the file, then close it.
. In your code editor, open nutty > app > models > product.rb.

. We also need to let the product model know about this relationship:

validates :price, numericality: true
has_and_belongs_to_many :carts

has_attached_file :image, styles: { medium: "700x900>", thumb: "120x80>" 1},
default_url: "/images/:style/missing.png"

That's enough to create a many-to-many relationship between those two
model objects.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

Many-to-Many Relationships: Part One

. Save the file and then close it.

Making the Add to Cart Button Functional

Let's turn the Add To Cart button into a proper form so we can put items in the cart.
. In a browser, go to: localhost:3000

. Click on Corkscrew Bill.

. Click the Add To Cart button. Of course it doesn't work yet, but that's what we'll get
working next.

. In your code editor, open nutty > app > views > products > show.html.erb
. Around line 25, add the following bold code:

<p class="star-rating-large five ir">Star Rating</p>
<%= form_tag '/cart', method: :post do %>

<% end %>

<input type="number" name="quantity" min="1" max="100" value="1">

NOTE: Posting to the root of a controller's route calls the create method in
cart_controller.

. Add the following bold code:

<%= form_tag '/cart', method: :post do %>
<%= hidden_field_tag :product_id, @product.id %>
<%= number_field_tag :quantity, 1, min: 1, max: 100 %>
<%= button_tag id: 'add-cart', class: 'btn btn-red btn-md' do %>
 Add to Cart
<% end %>
<% end %>

NOTE: The hidden_field_tag lets the form know which products go in the cart.
The number_field_tag creates a field for the quantity. The button_tag is our
submit button.

. Delete the old cart button code shown in bold below (around lines 32-37):

<input type="number" name="quantity" min="1" max="100" value="1">

<button type="button" id="add-cart" class="btn btn-red btn-md">
 Add to Cart
</button>

. Save the file.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

79

80

Many-to-Many Relationships: Part One

Making Sure Customers Are Signed In
1. In your code editor, open nutty > app > controllers > cart_controller.rb

Before a customer can add anything to their cart, they need to have a cart. Before
they can have a cart, they need to be signed in. We could check if they are signed in
by adding code to the create method... but that wouldn't be very DRY because we
would be repeating code.

2. Instead, cut (Cmd-X) the following bold code:

class CartController < ApplicationController
def dindex
@title = "Your Cart"
if customer_signed_in?
current_customer.create_cart if current_customer.cart.nil?
@cart = current_customer.cart
else
redirect_to new_customer_session_path, alert: "Please sign in to
access your cart." and return
end
end

3. Between the create method and the final end keyword, create a private (internal
controller) method as shown in bold below:

def create

end

private
def load_cart_or_redirect_customer

end
end

4. Paste (Cmd-V) the code you cut into the method as shown below:

private
def load_cart_or_redirect_customer
if customer_signed_in?
current_customer.create_cart if current_customer.cart.nil?
@cart = current_customer.cart
else
redirect_to new_customer_session_path, alert: "Please sign in to
access your cart." and return
end
end

NOTE: Remember that private controller methods don't necessarily lead to a page—
they are just called internally by the controller.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

Many-to-Many Relationships: Part One

. We want the private method to run before the index or create pages so the sign
in code will run before customers view the cart or add anything to it. Add this code:

class CartController < ApplicationController
before_action :load_cart_or_redirect_customer

def dindex

Adding Products to the Cart
. Now we can load up the cart with products. Around line 9, type:

def create

product = Product.find(params[:product_id])

@cart.products << product

@cart.save

redirect_to '/cart', notice: "#{product.title} was added to your cart." and
return
end

NOTE: Remember, from show.html.erb, we're going to pass ourselves the product's
id as a hidden field so we will get it back in the params hash. The product is then
added to the cart. Then the cart is saved. Finally the customer is redirected to the
cart page with a notice that the product was added successfully.

. Save the file.

. Let's try it out and see if it works. In the browser, go back to the Corkscrew Bill page
and reload it.

. Click Add To Cart.

It's working, but our cart is still showing the sample data. We need to implement the
actual items in the cart.

. In your code editor, open nutty > app > views > cart > index.html.erb
. Around lines 20 and 36, wrap the existing code in the following bold tags:

<tbody>
<% @cart.products.each do |product| %>
<tr>
<td id="thumbnail-div" class="hidden-xs'">

CODE OMITTED TO SAVE SPACE

<td class="hidden-xs">$19.99</td>
<td class="total-price">$19.99</td>
</tr>
<% end %>
<td id="thumbnail-div" class="hidden-xs">

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

81

82

10.

11.

12.

Many-to-Many Relationships: Part One

. We only need one row to make the cart show the correct item(s). Before we make

that row dynamic, first delete the extra row (around lines 37-49):

<td id="thumbnail-div" class="hidden-xs">
<img src="1img/product_images/toothbrush.jpg" class="cart-
thumbnail” alt="Pantone Toothbrush">
</td>
<td>
<p>Pantone Toothbrush Set</p>
<p class=""gray-text">Item #NG00921</p>
</td>
<td><input type="number" name="quantity" min="1" max="100" value="2">
update
remove
</td>
<td class="hidden-xs">$9.99</td>
<td class="total-price'">$19.98</td>

. Around line 23, highlight the link and image:

<img src="1img/product_images/corkscrew-bill.jpg"
class="cart-thumbnail" alt="Corkscrew Bill">

. Delete it and replace it with the bold code shown below:

<td did="thumbnail-div" class="hidden-xs">
<%= link_to product do %>
<%= +image_tag product.image.url(:medium), alt: product.title, class:
'cart-thumbnail' %>
% end %>
</td>

Around line 28, find the following code and highlight it:
<p>Corkscrew Bill</p>
Replace it with the bold code as shown:

<td>
<%= link_to product do %>
<p><%= product.title %></p>
% end %>
<p class="gray-text">Item #NG45636</p>

Replace the item number as shown (around line 31):
<p class="gray-text">Item #<%= product.sku %></p>

We'll implement the quantity, update, and remove actions later.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

13.

14.

15.

16.

17.

Many-to-Many Relationships: Part One

Replace the product prices ($19.99) as shown (around lines 37-38):

<td class="hidden-xs"><%= number_to_currency product.price %></td>
<td class="total-price"><%= number_to_currency product.price %></td>

Save the file.

Go back to the cart in the browser and reload it: localhost:3000/cart
Now it should only have Corkscrew Bill in it.

Try adding another product. Click on the logo at the top left to go home.
Click any product to go to its page. Then click the Add To Cart button.

Voilal Now we should have the two items we added to our cart!

How Do We Implement the Quantity Field?

. While we're still looking at the cart in the browser, take a look at the Quantity field.

We haven't done anything to make it functional yet.

How do we implement this Quantity field? Does it become a property of the
product? That wouldn't make sense. Does it become a property of the cart?

As we strategize what to do about the Quantity field, we begin to see the problem
with the has_and_belongs_to_many relationship. It's sufficient for the most basic
many-to-many relationships. However, at some point in nearly any implementation,
you'll find that you need to tack on some additional metadata to the relationship
between two models.

The Quantity field refers to the relationship of the product and the cart. So we
somehow need to get the quantity into the join table we created in this exercise.
With a simple join table that isn't a model object of its own, there's no room there to
doit.

In the next exercise, we'll look at a better way to handle these kinds of relationships.

. Leave your code editor and browser open, as well as the server running in Terminal

so we can continue with them in the following exercises.

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP 83

Many-to-Many Relationships: Part One

The has_many & belongs_to Relationship

One of the most basic model relationships in Ruby on Rails is one in which
one model has_many instances of objects from another model (which
belongs_to the model that has_many). It's just like the has_one
relationship introduced earlier in this exercise, except that objects from one
model will need to be associated with more than one object (even a lot of
them!) from the connected model.

The diagram below references a movie database app that has two connected
models. Each movie in the app has a unique numeric id field, which indicates
that each movie only appears once in the database. That's your indicator that
the Movie model is the one that has_many.

In this app, the goal is to give the site’s admins the ability to assign as many
different actors (cast members) to each movie as the cast roster calls for. To
create that functionality, we would make sure the Cast Member model
belongs_to the Movie model. The Cast Member model gets a foreign key
which says that it belongs to the Movie model, the one that has_many.

The foreign key movie_id refers to an integer field that stores the unique
number associated with each item in the Movie model. This field stores the id
of the movie each cast member is associated with. It is called “foreign”
because it refers to another table, and called a “key" because it refers to that
table's primary key (id).

has_many Relationship

Cast Member

name
movie_id

has_many :cast_members belongs_to :movie

RUBY ON RAILS LEVEL 2 « COPYRIGHT NOBLE DESKTOP

	Ruby on Rails Level 2
	Copyright Info
	Table of Contents
	Downloading the Class Files
	Before You Begin: Installing Ruby on Rails
	Topics: Installing Command Line Tools, Installing Homebrew, Installing Ruby Version Manager (RVM), Installing Ruby & Rails

	Exercise 1A: Setting Up: Do This Before Other Exercises!
	Topics: Setting up your class files

	Exercise 1B: Closures: Blocks, Procs, & Lambdas
	Topics: Blocks, Writing methods that work with blocks, Procs vs. lambdas

	Exercise 1C: Ruby Fundamentals: Inheritance, Mixins, & Modules
	Topics: Inheritance, Overriding a parent class’s method, Calling a parent class’s method using super, Mixins & modules

	Exercise 1D: Object Introspection
	Topics: The class & superclass methods, The ancestors method, The is_a? & respond_to? methods

	Exercise 1E: Extending Core Ruby Classes
	Topics: Extending the string class, Adding a new method to the string class

	Exercise 1F: Error Handling & Exceptions
	Topics: Handling errors, Different types of errors, The raise method

	Exercise 2A: Getting Started with Active Admin
	Topics: Installing the Active Admin gem, Logging in to Active Admin, Generating a resource

	Exercise 2B: Customizing Product Images
	Topics: Installing the Paperclip gem, Installing the ImageMagick image processor, Modifying the form, Customizing images

	Exercise 2C: Product Images, SEO-Friendly Slugs, & Markdown
	Topics: Installing the FriendlyId gem, Using slugs to create SEO-friendly URLs, Remaking the database, Using Markdown to make bulleted lists

	Exercise 2D: Customizing Active Admin
	Topics: Customizing the product columns, Customizing the filter sidebar

	Exercise 3A: Many-to-Many Relationships: Part One
	Topics: The has_one relationship, The has_and_belongs_to_many relationship

	Exercise 3B: Many-to-Many Relationships: Part Two
	Topics: The has_many, through relationship, Setting quantity, Removing items

	Exercise 3C: Adding Price Functionality to the Cart
	Topics: Calculating the subtotal, Delegates, Fixing the order summary, Displaying the number of items in the cart

	Exercise 3D: Advanced Model Relationships: Polymorphic
	Topics: Polymorphic relationships, Making the checkout button functional, Adding an order model, Checking out & emptying the cart

	Exercise 3E: Advanced Model Relationships: Self Joins
	Topics: Self join relationships, Displaying related products

	Exercise 4A: Updating Quantities & Prices with AJAX
	Topics: Adding an AJAX request, Disabling turbolinks

	Exercise 4B: Web Services: Integrating a Third-Party
	Topics: Installing the HTTParty gem, Adding Bitcoin total to the order summary

	Exercise 4C: Web Services: Outgoing with JSON, XML, & CSV
	Topics: Converting product info into JSON, Creating an XML file, Using Active Admin to export CSV

	Exercise 4D: Confirmation Emails & Testing with MailCatcher
	Topics: Installing & configuring MailCatcher, Creating a mailer, Sending the email

	Exercise 4E: Deployment with Heroku & AWS S3
	Topics: Creating Heroku & Amazon Web Services accounts, Adding the gems that Heroku needs, Configuring Paperclip to store images on Amazon S3, Setting up AWS S3: creating a bucket & security keys, Deploying our code to Heroku, Sending emails with Heroku’s SendGrid add-on

	Exercise B1: The Making of That Nutty Guy: Page Layout
	Topics: Creating the product model, view, & controller, Incorporating the designer’s HTML/CSS, Fixing the missing images & fonts

	Exercise B2: The Making of That Nutty Guy: Dynamic Content
	Topics: Adding dynamic data, Rendering a partial, Validations

	Exercise B3: User Sign-In with the Devise Gem
	Topics: Installing the Devise gem, Alerts, User logins

	Exercise B4: Managing Your Code with Git
	Topics: Creating a new Git repository, Tracking changes & adding files, Committing code to Git, GitHub: pushing your code to the cloud, Committing a change to the repository, Cloning a repository

	Noble’s Other Workbooks
	Basic Structure of Scaffolding

