
Exercise 1B: Basic TweeningTopics: Loading scripts, Anatomy of a TweenLite tween, The TweenLite.to() method, Tweening multiple properties, Easing

Exercise Preview

Exercise Overview

In this exercise, you’ll learn how to incorporate the GreenSock Animation Platform
(GSAP) into a project and animate some basic CSS properties of an image. We will
explore the basic syntax of a TweenLite tween and show you just how easy and
hassle-free animation can be with GSAP.

TweenLite, the core of the GSAP engine, handles animating just about any property
of any object. It is relatively lightweight yet full-featured.

GSAP’s architecture lets you load just the files you need to keep overall file size small,
or if you favor convenience, you can just load TweenMax which packages many of
the core components into one file. For now we will focus on loading just what we
need and as our projects require more features, we’ll jump over to using TweenMax.

Previewing the Finished Animation

1. To take a look at the animation we’ll be building, open up Google Chrome.

2. To open a file, hit Cmd–O (Mac) or Ctrl–O (Windows).

3. Navigate to Desktop > Class Files > yourname-GSAP Class > Tweening Basics.

NOTE: All the folders you need for the exercises in this workbook are located in the
yourname-GSAP Class folder.

4. Double–click on finished.html.

You will see the Noble Desktop icon rotating across the screen. Cool!

5. To see the transition again, you can hit Cmd–R (Mac) or F5 (Windows) to reload the
browser. Feel free to do this until you get a solid feel for the animation.

6. Close Chrome.

17HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP

1BBasic Tweening

Loading Scripts

In this exercise, we’ll be using three components of GSAP in order to enable the
tweening of the CSS properties of a DOM element. We’ll animate using the core
component TweenLite and two plugins: the CSSPlugin and EasePack.js.

1. In a code editor (such as Sublime Text, Dreamweaver, TextMate, Coda, etc.) open
start.html from the Tweening Basics folder.

NOTE: You may want to open the Tweening Basics folder in your code editor if it
allows you to (like Sublime Text does).

2. Let’s first get acquainted with the basic HTML and CSS in start.html. Look inside the
body tag and around line 18 you will see:

3. Note that it has an ID of icon. We are going to be using that ID to identify this
element as a target of our TweenLite tweens.

Before we start animating, we’ll need to link to the GSAP JavaScript files. Although
in your actual production site, you can can just paste a CDN link into your page,
you’ll use local versions of the scripts that have already been downloaded and
included with your Class Files. This will allow you to work offline if necessary.

4. Notice that there are two sets of script tags in the file—one for the CDN links and
one for the tween you’ll add soon. Around line 20, find the following comment:

<!-- load scripts after DOM has been rendered -->

5. Below that comment, add the following bold code to load the scripts we need:

<!-- load scripts after DOM has been rendered -->
<script src="js/gsap/TweenLite.js"></script>
<script src="js/gsap/plugins/CSSPlugin.js"></script>
<script src="js/gsap/easing/EasePack.js"></script>

These three lines of code are used to load TweenLite.js, CSSPlugin.js, and
EasePack.js. This lightweight combo is a very common setup.

TweenLite is GSAP’s core engine, including basic easing equations: Power0, Power1,
Power2, Power3, Power4, Linear, Quad, Cubic, Quart, Quint, and Strong.

CSSPlugin enables TweenLite to animate almost any CSS-related property of DOM
elements. This includes the obvious properties (width, height, margin, padding, top,
left) and more interesting ones like transforms (rotation, scaleX, scaleY, skewX,
skewY, x, y, rotationX, and rotationY), colors, opacity, and lots more.

EasePack adds more advanced eases like: Elastic, SlowMo, Bounce, SteppedEase,
RoughEase, Sine, Circ, and Expo.

6. Save your file.

HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP18

Basic Tweening1B

Anatomy of a TweenLite Tween

1. In order to get up and running with any animation we need to know:

• What object is being animated

• How long the animation will last

• Which properties that are being animated and the end values of those properties

2. All these details of the animation are going to be passed into TweenLite’s to()
method as (do not type this code—it is just an example):

TweenLite.to(target:Object, duration:Number, vars:Object)

target: The object or objects that are being tweened.

duration: How long (in seconds by default) our animation will run.

vars: A JavaScript object containing property:value pairs and special properties
like eases, callbacks, and delays.

The TweenLite.to() API docs: greensock.com/docs/TweenLite/static.to() contain
more details, but we’ll walk through it step-by-step below.

Using the TweenLite.to() Method

1. Let’s first create a variable for the element we want to tween. In the script tag under
the add your own script comment, add the following code as shown in bold:

<!-- add your own script -->
<script>
 var icon = document.getElementById("icon");
</script>

Our variable is called icon because that is the ID of the image we will tween.

Now that we have selected the item we want to tween, let’s tween it!

2. After the line of code you just wrote, hit Return (Mac) or Enter (Windows) three
times to create some space.

3. In the second line of whitespace, type the following method shown in bold:

 var icon = document.getElementById("icon");

 TweenLite.to();

</script>

4. Input the following bold parameters to the TweenLite.to() method:

TweenLite.to(icon, 2, {opacity:0});

19HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP

1BBasic Tweening

https://greensock.com/docs/TweenLite/static.to()

5. The TweenLite.to() method takes three parameters. Let’s break that down:

• The first parameter in the TweenLite.to() method must always be the target (the
object(s) you want to tween), in this case icon.

• The second parameter is always the duration over which the animation takes
place, in this case 2 seconds.

• The third parameter, the vars object {}, is an object defining the end values for
each property that should be tweened. In this example the opacity property is
being tweened to a value of 0.

The vars object {} can contain multiple tweenable properties as well as special
properties like callbacks, eases, delays and more. We’ll discuss each of these in depth
as we progress.

6. Save the file by hitting Cmd–S (Mac) or Ctrl–S (Windows).

7. Preview start.html in a web browser.

NOTE: Most code editors have a shortcut to make previewing a page in a browser
easier (some are shown below). If your code editor doesn’t have a shortcut, go to
your browser, hit Cmd–O (Mac) or Ctrl–O (Windows), navigate to yourname-GSAP
Class > Tweening Basics and double–click start.html to open it.

Browser Preview Shortcuts

If you are using Sublime Text with SideBarEnhancements installed and have
set your user key bindings in the Before You Begin section at the beginning
of the workbook, hit F12 (or fn–F12 depending on your keyboard settings)
to open the saved HTML document in your default browser.

This typically does not work on a Mac unless you disable/change the
Show Dashboard keyboard shortcut in System Preferences > Mission
Control (or Keyboard).

If you are using Dreamweaver, go to File > Preview in Browser.

8. Notice that the opaque icon takes two seconds to fade out and become completely
transparent. The icon is shown mid-fade in the screenshot below:

HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP20

Basic Tweening1B

9. If you need to see the animation again, remember that you can hit Cmd–R (Mac) or
F5 (Windows) to reload the browser.

10. We recommend leaving start.html open in your browser as you work, so you can
simply reload the page to see the changes you make in your code.

Tweening Multiple Properties

You can input any number of CSS properties within the curly braces (within reason).
Let’s keep the opacity tween and add a rotation tween.

1. Return to your code editor and type the following bold code. Remember to add a
comma to separate the properties!

TweenLite.to(icon, 2, {opacity:0, rotation:360});

NOTE: The order in which properties are listed doesn’t matter. You may also notice
that we did not need any pesky vendor-prefixes to rotate an element in GSAP. For a
contrast with CSS transforms, see the sidebar at the end of the exercise.

2. Let’s see what this looks like now. Save the file and preview the page in a browser.

3. Over the course of two seconds, the object tweens to an opacity of zero AND
rotates 360°. Spiffy!

4. Return to your code editor.

5. Delete the opacity property so that the TweenLite.to() method looks like this:

TweenLite.to(icon, 2, {rotation:360});

This will make it easier to see some of the changes to the animation we’ll try next.

6. Let’s make the icon slide to the right, as seen in the finished file. To do that, we want
to animate the left property. Type the bold code as shown below:

TweenLite.to(icon, 2, {rotation:360, left:400});

7. Save the file and preview the page in a browser.

While the object is rotating, the left position isn’t budging. This is because the icon
element does not have a CSS position property.

21HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP

1BBasic Tweening

8. Return to your code editor.

9. In order to tween a positional property of an element, that element MUST have a
CSS property of absolute, relative, or fixed. Around line 12, add the following bold
code to the CSS rule for #icon:

#icon {
 position: relative;
}

10. Save the file and preview the page in a browser. The icon is rotating and moving to
the right, just like we intended. Awesome!

Easing

An ease alters the rate of change during a tween, giving the movement a different
feel. There are many different eases we can add to the tween. TweenLite includes
eases like the Power series, Quad, Cubic, and more. The EasePack file adds more
advanced easing options to your repertoire.

1. To get an idea of the eases that are available in GSAP, check out the Ease Visualizer
tool on GreenSock’s website: greensock.com/ease-visualizer

2. You will see the following interface. There is a menu of eases on the right which
allows you to select an ease and preview its animation.

HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP22

Basic Tweening1B

https://greensock.com/ease-visualizer

3. Below the ease graph there is a line of code that updates based on your selection.
Notice that you can click on any of the underlined text in the code preview to
configure the ease further.

NOTE: There is also a short video on the Ease Visualizer page that will explain how it
works in more detail.

4. Return to your code editor. Let’s try out the Bounce.easeOut ease.

5. After the left property type a comma, then type the bold ease as shown below:

TweenLite.to(icon, 2, {rotation:360, left:400, ease:Bounce.easeOut});

The name Bounce.easeOut is pretty straightforward: the element will bounce at the
end of the tween (as signified by Out).

6. Save the file and preview the page in a browser. Notice the bit of bouncing motion
at the end of the tween.

7. Let’s experiment with a different ease. Back in the code, delete the word Bounce,
and in its place type the following bold code:

TweenLite.to(icon, 2, {rotation:360, left:400, ease:Back.easeOut});

8. Save the file and preview the page in a browser.

As you can see with the logo, the Back ease overshoots the end values before
settling back into its final position.

9. If you’re one of the people who zones out when a page is loading, this tween is too
easy to miss. We don’t want the animation to start at the same time the page loads.
Return to your code editor.

10. To add a delay of one second, type the bold code below.

TweenLite.to(icon, 2, {rotation:360, left:400, ease:Back.easeOut, delay:1});

11. Save the file and preview the page in a browser. As expected, the animation starts a
second after the page loads.

If you have time, feel free to experiment with other eases!

23HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP

1BBasic Tweening

Additional Notes on Easing

Eases are traditionally named after the mathematical equations that are used
to generate their smooth curves. Unfortunately names like Quad, Cubic, and
Quart do very little to help animators understand which ease is stronger than
the next. GSAP’s Power ease names, on the other hand, make it very easy for
animators to experiment with and adjust the strength of the ease they are
using. Start with Power1 and work your way up to Power4.

Power0: No easing, same as Linear.easeNone

Power1: Same as Quad

Power2: Same as Cubic

Power3: Same as Quart

Power4: Same as Quint

GSAP’s Ease Pack (included in TweenMax.js or separately in easing/
EasePack.js) additionally includes:

• Special effects eases like Back, Bounce, and Elastic

• More legacy eases like Circ, Sine, and Quad

• Proprietary eases like SlowMo and RoughEase

No Vendor-Prefixes Needed Thanks to GSAP!

When handling transforms with CSS, you typically need to write an
inordinate amount of code to handle various vendor-prefixes. Take a look at
the following CSS needed to rotate an element 90° for modern browsers:

-webkit-transform: rotate(90deg);
-moz-transform: rotate(90deg);
-ms-transform: rotate(90deg);
-o-transform: rotate(90deg);
filter:
progid:DXImageTransform.Microsoft.BasicImage(rotation=1);
/* Legacy IE */

Using GSAP, you just need to write rotation:90 and GSAP’s handy CSSPlugin
handles all the browser prefixes for you behind the scenes. Furthermore,
2D transforms work back to IE 6, which is quite a feat!

HTML5 ANIMATION WITH GREENSOCK • COPYRIGHT NOBLE DESKTOP24

Basic Tweening1B

	HTML5 Animation with GreenSock
	Copyright Info
	Table of Contents
	Downloading the Class Files
	What Is the GreenSock Animation Platform?
	Topics: Introducing GSAP, The main components of GSAP

	Before You Begin
	Topics: Supported browsers, Recommended software

	Exercise 1A: Setting Up: Do This Before Other Exercises!
	Topics: Setting up your class files

	Exercise 1B: Basic Tweening
	Topics: Loading scripts, Anatomy of a TweenLite tween, The TweenLite.to() method, Tweening multiple properties, Easing

	Exercise 1C: Creating a Simple Sequence
	Topics: The TweenLite.from() method, Relative vs. absolute values, Pros & cons of sequencing using delays

	Exercise 1D: Creating an Image Slider
	Topics: Using jQuery, jQuery’s $(document).ready() function & creating variable references, Using jQuery’s click() method to trigger a tween, Tracking code changes in Chrome’s DevTools, Using conditional logic to reset an animation

	Exercise 1E: Tween Control
	Topics: Using set() to change an element’s position, The transformOrigin property, Controlling the direction of rotation, Giving a tween a var reference, The play() & reverse() methods

	Exercise 2A: Tween Methods & Callbacks
	Topics: Getting & setting tween-related values, Event callbacks, Changing a tween’s timeScale()

	Exercise 2B: TweenMax
	Topics: Introduction to TweenMax, Only in TweenMax: repeat, repeatDelay, & yoyo, Calbacks: onStart, onRepeat, & onComplete

	Exercise 2C: Staggered Animation in 3D
	Topics: TweenMax’s staggerFrom() method, Using transformPerspective to animate in 3D, Using transformOrigin in a 3D tween

	Exercise 2D: TimelineLite
	Topics: Sequencing tweens with TimelineLite, Adjusting timing with the position parameter, Using labels in a TimelineLite, Modifying an ease with config(), Seeking a position relative to a label, Creating an animated progress bar

	Exercise 3A: TimelineLite Control
	Topics: Adding play & pause buttons, Adding reverse, resume, & restart buttons, Making an intelligent play button, Adding timescale buttons, Configuring a jQuery UI slider

	Exercise 3B: TimelineMax: Burger Boy Banner
	Topics: Creating the TimelineMax & animating the first panel, Animating the second panel, Animating the third panel, Integrating TimelineMax’s repeat & repeatDelay

	Exercise 3C: Promo: Starfield
	Topics: Creating the starfield timeline within a function, Using a for() loop to dynamically generate stars, Positioning the stars, Using Math.random() to enhance the animation

	Exercise 3D: Promo: SlowMo Ease
	Topics: Intro to the SlowMo ease, Configuring the linearRatio & power parameters, Staggered animation in timelines, SlowMo’s yoyoMode

	Exercise 4A: Promo: Nested Timelines
	Topics: Nesting timelines within a parent timeline, Adding individual tweens to the parent timeline, Making provisions for connectivity problems

	Exercise 4B: Rocket Launch: TextPlugin
	Topics: Enabling & testing TextPlugin, Coding the Ready-Set-GO countdown, Creating a dramatic animation for “GO!”

	Exercise 4C: Rocket Launch: Special Eases
	Topics: Animating the rocket with RoughEase, Animating the flames with SteppedEase, Fine-tuning the timing & launching the rocket

	Exercise 4D: ScrollTo Plugin: Board Member Biographies
	Topics: Using GSAP’s ScrollTo plugin, Adding functionality to the navigation buttons, Adding rollover effects using CSSPlugin’s className property

	Exercise B1: Quote with SplitText
	Topics: Club GreenSock, Downloading members-only Club GreenSock files, Using GSAP’s SplitText utility, Animating the quote, Animating the author’s name, The revert() method

	Exercise B2: Fancy Rollovers with TimelineLite
	Topics: Using progress() to jump to the end of the animation, Tweening the clip property, Using mouseenter & mouseleave, Accounting for unexpected user interaction

	Noble’s Other Workbooks
	ImmediateRender
	CSSPlugin
	GSAP FAQ

